Integral Operator is Linear

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $T$ be an integral operator.

Let $f$ and $g$ be integrable real functions on a domain appropriate to $T$.


Then $T$ is a linear operator:

$\forall \alpha, \beta \in \R: \map T {\alpha f + \beta g} = \alpha \map T f + \beta \map T g$


Corollary 1

$\forall \alpha, \beta \in \R: \map T {f + g} = \map T f + \map T g$


Corollary 2

$\forall \alpha \in \R: \map T {\alpha f} = \alpha \map T f$


Proof

Let $T$ be expressed in its full form as an integral fransform:

$\map T f := \ds \int_a^b \map f x \map K {p, x} \rd x$

for some integrable function $\map K {p, x}$.


Then:

\(\ds \map T {\alpha f + \beta g}\) \(=\) \(\ds \int_a^b \paren {\alpha \map f x + \beta \map g x} \map K {p, x} \rd x\)
\(\ds \) \(=\) \(\ds \int_a^b \paren {\alpha \map f x \map K {p, x} + \beta \map g x \map K {p, x} } \rd x\) Real Multiplication Distributes over Addition
\(\ds \) \(=\) \(\ds \alpha \int_a^b \map f x \map K {p, x} \rd x + \beta \int_a^b \map g x \map K {p, x} \rd x\) Linear Combination of Definite Integrals
\(\ds \) \(=\) \(\ds \alpha \map T f + \beta \, \map T g\) Definition of Integral Operator

$\blacksquare$