Integral of Arcsine Function

From ProofWiki
Jump to navigation Jump to search



Theorem

$\ds \int \arcsin x \rd x = x \arcsin x + \sqrt {1 - x^2} + C$

for $x \in \closedint {-1} 1$.


Proof

\(\ds \int \arcsin x \rd x\) \(=\) \(\ds \int 1 \cdot \arcsin x \rd x\)
\(\ds \) \(=\) \(\ds x \arcsin x - \int x \paren {\frac \rd {\rd x} \arcsin x} \rd x\) Integration by Parts
\(\ds \) \(=\) \(\ds x \arcsin x - \int \frac x {\sqrt {1 - x^2} } \rd x\) Derivative of Arcsine Function


Substitute:

\(\ds u\) \(=\) \(\ds 1 - x^2\)
\(\ds \frac {\d u} {\d x}\) \(=\) \(\ds -2 x\) differentiating with respect to $x$
\(\ds \leadsto \ \ \) \(\ds -\frac 1 2 \frac {\d u} {\d x}\) \(=\) \(\ds x\)
\(\ds \int \arcsin x \rd x\) \(=\) \(\ds x \arcsin x - \int \frac {- \frac 1 2} {\sqrt u} \frac {\d u} {\d x} \rd x\) Integration by Substitution
\(\ds \) \(=\) \(\ds x \arcsin x + \frac 1 2 \int u^{-1/2} \rd u\)
\(\ds \) \(=\) \(\ds x \arcsin x + u^{1/2} + C\) Integral of Power
\(\ds \) \(=\) \(\ds x \arcsin x + \sqrt {1 - x^2} + C\) from $u = 1 - x^2$

$\blacksquare$


Sources