Integral over 2 pi of Sine of m x by Cosine of n x
Jump to navigation
Jump to search
Theorem
Let $m, n \in \Z$ be integers.
Let $\alpha \in \R$ be a real number.
Then:
- $\ds \int_\alpha^{\alpha + 2 \pi} \sin m x \cos n x \rd x = 0$
Proof
Let $m \ne n$.
\(\ds \int \sin m x \cos n x \rd x\) | \(=\) | \(\ds \frac {-\map \cos {m - n} x} {2 \paren {m - n} } - \frac {\map \cos {m + n} x} {2 \paren {m + n} } + C\) | Primitive of $\sin m x \cos n x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int_\alpha^{\alpha + 2 \pi} \sin m x \cos n x \rd x\) | \(=\) | \(\ds \intlimits {\frac {-\map \cos {m - n} x} {2 \paren {m - n} } - \frac {\map \cos {m + n} x} {2 \paren {m + n} } } \alpha {\alpha + 2 \pi}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\frac {-\map \cos {\paren {m - n} \paren {\alpha + 2 \pi} } } {2 \paren {m - n} } - \frac {\map \cos {\paren {m + n} \paren {\alpha + 2 \pi} } } {2 \paren {m + n} } }\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds - \, \) | \(\ds \paren {\frac {-\map \cos {m - n} \alpha} {2 \paren {m - n} } - \frac {\map \cos {m + n} \alpha} {2 \paren {m + n} } }\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\frac {-\map \cos {m - n} \alpha} {2 \paren {m - n} } - \frac {\map \cos {m + n} \alpha} {2 \paren {m + n} } }\) | Cosine of Angle plus Full Angle: Corollary | |||||||||||
\(\ds \) | \(\) | \(\, \ds - \, \) | \(\ds \paren {\frac {-\map \cos {m - n} \alpha} {2 \paren {m - n} } - \frac {\map \cos {m + n} \alpha} {2 \paren {m + n} } }\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) | after simplification |
When $m = n$ we have:
\(\ds \int \sin m x \cos m x \rd x\) | \(=\) | \(\ds \frac {\sin^2 m x} {2 m} + C\) | Primitive of $\sin m x \cos m x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int_\alpha^{\alpha + 2 \pi} \sin m x \cos m x \rd x\) | \(=\) | \(\ds \intlimits {\frac {\sin^2 m x} {2 m} } \alpha {\alpha + 2 \pi}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\map {\sin^2} {m \paren {\alpha + 2 \pi} } } {2 m} - \frac {\sin^2 m \alpha} {2 m}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\sin^2 m \alpha} {2 m} - \frac {\sin^2 m \alpha} {2 m}\) | Cosine of Angle plus Full Angle: Corollary | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
$\blacksquare$
Sources
- 1961: I.N. Sneddon: Fourier Series ... (previous) ... (next): Chapter One: $\S 2$. Fourier Series: $(3)$