Integral over 2 pi of Sine of m x by Sine of n x
Jump to navigation
Jump to search
Theorem
Let $m, n \in \Z$ be integers.
Let $\alpha \in \R$ be a real number.
Then:
- $\ds \int_\alpha^{\alpha + 2 \pi} \sin m x \sin n x \rd x = \begin {cases} 0 & : m \ne n \\ \pi & : m = n \end {cases}$
That is:
- $\ds \int_\alpha^{\alpha + 2 \pi} \sin m x \sin n x \rd x = \pi \delta_{m n}$
where $\delta_{m n}$ is the Kronecker delta.
Proof
Let $m \ne n$.
\(\ds \int \sin m x \sin n x \rd x\) | \(=\) | \(\ds \frac {\sin \paren {m - n} x} {2 \paren {m - n} } - \frac {\sin \paren {m + n} x} {2 \paren {m + n} } + C\) | Primitive of $\sin m x \sin n x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int_\alpha^{\alpha + 2 \pi} \sin m x \sin n x \rd x\) | \(=\) | \(\ds \intlimits {\frac {\sin \paren {m - n} x} {2 \paren {m - n} } - \frac {\sin \paren {m + n} x} {2 \paren {m + n} } } \alpha {\alpha + 2 \pi}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\frac {\sin \paren {\paren {m - n} \paren {\alpha + 2 \pi} } } {2 \paren {m - n} } - \frac {\sin \paren {\paren {m + n} \paren {\alpha + 2 \pi} } } {2 \paren {m + n} } }\) | ||||||||||||
\(\ds \) | \(\) | \(\, \ds - \, \) | \(\ds \paren {\frac {\sin \paren {m - n} \alpha} {2 \paren {m - n} } - \frac {\sin \paren {m + n} \alpha} {2 \paren {m + n} } }\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\frac {\sin \paren {m - n} \alpha} {2 \paren {m - n} } - \frac {\sin \paren {m + n} \alpha} {2 \paren {m + n} } }\) | Sine of Angle plus Full Angle: Corollary | |||||||||||
\(\ds \) | \(\) | \(\, \ds - \, \) | \(\ds \paren {\frac {\sin \paren {m - n} \alpha} {2 \paren {m - n} } - \frac {\sin \paren {m + n} \alpha} {2 \paren {m + n} } }\) | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
$\Box$
When $m = n$ we have:
\(\ds \int \sin m x \sin m x \rd x\) | \(=\) | \(\ds \int \sin^2 m x \rd x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac x 2 - \frac {\sin 2 m x} {4 m} + C\) | Primitive of $\sin^2 m x$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int_\alpha^{\alpha + 2 \pi} \sin m x \sin m x \rd x\) | \(=\) | \(\ds \intlimits {\frac x 2 - \frac {\sin 2 m x} {4 m} } \alpha {\alpha + 2 \pi}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\frac {\alpha + 2 \pi} 2 - \frac {\sin \paren {2 m \paren {\alpha + 2 \pi} } } {4 m} } - \paren {\frac \alpha 2 - \frac {\sin 2 m \alpha} {4 m} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\frac {\alpha + 2 \pi} 2 - \frac {\sin 2 m \alpha} {4 m} } - \paren {\frac \alpha 2 - \frac {\sin 2 m \alpha} {4 m} }\) | Sine of Angle plus Full Angle: Corollary | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\alpha + 2 \pi - \alpha} 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \pi\) |
$\blacksquare$
Sources
- 1961: I.N. Sneddon: Fourier Series ... (previous) ... (next): Chapter One: $\S 2$. Fourier Series: $(2)$