Intersection and Sum of Submodules/Corollary
Jump to navigation
Jump to search
Corollary to Intersection and Sum of Submodules
Let $\left({G, +, \circ}\right)_R$ be an $R$-module.
Ordered by $\subseteq$, the set of all submodules of $G$ is a complete lattice:
Let $H_1, H_2, \ldots, H_n$ be submodules of $G$.
Then:
- $(1) \quad H_1 + H_2 + \cdots + H_n$ is the supremum
- $(2) \quad H_1 \cap H_2 \cap \cdots \cap H_n$ is the infimum
of $\left\{{H_1, H_2, \ldots, H_n}\right\}$ in the complete lattice of all submodules of $G$.
Proof
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): $\S 27$: Theorem $27.2$: Corollary