Intersection is Associative/Family of Sets/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\family {S_i}_{i \mathop \in I}$ and $\family {I_\lambda}_{\lambda \mathop \in \Lambda}$ be indexed families of sets.

Let $\ds I = \bigcap_{\lambda \mathop \in \Lambda} I_\lambda$.


Then:

$\ds \bigcap_{i \mathop \in I} S_i = \bigcap_{\lambda \mathop \in \Lambda} \paren {\bigcap_{i \mathop \in I_\lambda} S_i}$


Proof

\(\ds \bigcap_{i \mathop \in I} S_i\) \(=\) \(\ds \map \complement {\map \complement {\bigcap_{i \mathop \in I} S_i} }\) Complement of Complement
\(\ds \) \(=\) \(\ds \map \complement {\bigcup_{i \mathop \in I} \map \complement {S_i} }\) De Morgan's Laws (Set Theory)/Set Complement/Family of Sets/Complement of Intersection
\(\ds \) \(=\) \(\ds \map \complement {\bigcup_{\lambda \mathop \in \Lambda} \paren {\bigcup_{i \mathop \in I_\lambda} \map \complement {S_i} } }\) General Associativity of Set Union
\(\ds \) \(=\) \(\ds \map \complement {\bigcup_{\lambda \mathop \in \Lambda} \paren {\map \complement {\bigcap_{i \mathop \in I_\lambda} S_i} } }\) De Morgan's Laws (Set Theory)/Set Complement/Family of Sets/Complement of Intersection
\(\ds \) \(=\) \(\ds \bigcap_{\lambda \mathop \in \Lambda} \paren {\map \complement {\map \complement {\bigcap_{i \mathop \in I_\lambda} S_i} } }\) De Morgan's Laws (Set Theory)/Set Complement/Family of Sets/Complement of Union
\(\ds \) \(=\) \(\ds \bigcap_{\lambda \mathop \in \Lambda} \paren {\bigcap_{i \mathop \in I_\lambda} S_i}\) Complement of Complement

$\blacksquare$


Sources