Intersection is Subset/General Result

From ProofWiki
Jump to navigation Jump to search


Let $S$ be a set.

Let $\mathcal P \left({S}\right)$ be the power set of $S$.

Let $\mathbb S \subseteq \mathcal P \left({S}\right)$.


$\displaystyle \forall T \in \mathbb S: \bigcap \mathbb S \subseteq T$

Family of Sets

In the context of a family of sets, the result can be presented as follows:

Let $\family {S_\alpha}_{\alpha \mathop \in I}$ be a family of sets indexed by $I$.


$\displaystyle \forall \beta \in I: \bigcap_{\alpha \mathop \in I} S_\alpha \subseteq S_\beta$

where $\displaystyle \bigcap_{\alpha \mathop \in I} S_\alpha$ is the intersection of $\family {S_\alpha}_{\alpha \mathop \in I}$.


\(\ds x\) \(\in\) \(\ds \bigcap \mathbb S\)
\(\ds \implies \ \ \) \(\, \ds \forall T \in \mathbb S: \, \) \(\ds x\) \(\in\) \(\ds T\) Definition of Set Intersection
\(\ds \implies \ \ \) \(\, \ds \forall T \in \mathbb S: \, \) \(\ds \bigcap \mathbb S\) \(\subseteq\) \(\ds T\) Definition of Subset