Intersection is Subset of Union

From ProofWiki
Jump to navigation Jump to search

Theorem

The intersection of two sets is a subset of their union:

$S \cap T \subseteq S \cup T$


Proof

\(\displaystyle S \cap T\) \(\subseteq\) \(\displaystyle S\) Intersection is Subset
\(\displaystyle S\) \(\subseteq\) \(\displaystyle S \cup T\) Set is Subset of Union
\(\displaystyle \leadsto \ \ \) \(\displaystyle S \cap T\) \(\subseteq\) \(\displaystyle S \cup T\) Subset Relation is Transitive

$\blacksquare$


Sources