Intersection of Applications of Down Mappings at Element equals Way Below Closure of Element

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $L = \struct {S, \vee, \wedge, \preceq}$ be a bounded below meet-continuous lattice.

Let $\operatorname {Ids}$ be the set of all ideals in $L$.

Let for all $I \in \operatorname {Ids}$: $m_I: S \to \operatorname {Ids}$ be a mapping:

$\forall x \in S: x \preceq \sup I \implies \map {m_I} x = \set {x \wedge i: i \in I}$

and

$\forall x \in S: x \npreceq \sup I \implies \map {m_I} x = x^\preceq$

where $x^\preceq$ denotes the lower closure of $x$.

Let $x \in S$.


Then

$\ds \bigcap \set {\map {m_I} x: I \in \operatorname {Ids} } = x^\ll$

where $x^\ll$ denotes the way below closure of $x$.


Proof

\(\ds \set {\map {m_I} x: I \in \operatorname {Ids} }\) \(=\) \(\ds \set {\map {m_I} x: I \in \operatorname {Ids} \land x \preceq \sup I} \cup \set {\map {m_I} x: I \in \operatorname {Ids} \land x \npreceq \sup I}\)
\(\ds \) \(=\) \(\ds \set {\set {x \wedge i: i \in I}: I \in \operatorname {Ids} \land x \preceq \sup I} \cup \set {x^\preceq: I \in \operatorname {Ids} \land x \npreceq \sup I}\) Definition of $m_I$
\(\ds \) \(=\) \(\ds \set {\paren {x^\preceq} \cap I: I \in \operatorname {Ids} \land x \preceq \sup I} \cup \set {x^\preceq: I \in \operatorname {Ids} \land x \npreceq \sup I}\) Intersection of Lower Closure of Element with Ideal equals Meet of Element and Ideal

Thus

\(\ds \bigcap \set {\map {m_I} x: I \in \operatorname {Ids} }\) \(=\) \(\ds \bigcap \set {\paren {x^\preceq} \cap I: I \in \operatorname {Ids} \land x \preceq \sup I} \cap \bigcap \set {x^\preceq: I \in \operatorname {Ids} \land x \npreceq \sup I}\)
\(\ds \) \(=\) \(\ds \bigcap \set {\paren {x^\preceq} \cap I: I \in \operatorname {Ids} \land x \preceq \sup I} \cap \bigcap \set {x^\preceq}\)
\(\ds \) \(=\) \(\ds \bigcap \set {\paren {x^\preceq} \cap I: I \in \operatorname {Ids} \land x \preceq \sup I} \cap x^\preceq\) Intersection of Singleton
\(\ds \) \(=\) \(\ds \paren {x^\preceq} \cap \bigcap \set {I: I \in \operatorname {Ids} \land x \preceq \sup I} \cap x^\preceq\) Set Intersection is Self-Distributive
\(\ds \) \(=\) \(\ds \paren {x^\preceq} \cap \paren {x^\ll} \cap x^\preceq\) Intersection of Ideals with Suprema Succeed Element equals Way Below Closure of Element
\(\ds \) \(=\) \(\ds x^\ll\) Intersection with Subset is Subset as $x^\ll \subseteq x^\preceq$ by Way Below implies Preceding

$\blacksquare$


Sources