Intersection of Relation Segments of Approximating Relations equals Way Below Closure

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $L = \struct {S, \vee, \wedge, \preceq}$ be a bounded below meet-continuous lattice.

Let $\map {\operatorname {App} } L$ be the set of all auxiliary approximating relations on $S$.

Let $x \in S$.


Then

$\ds \bigcap \set {x^\RR: \RR \in \map {\operatorname {App} } L} = x^\ll$


Proof

By Intersection of Ideals with Suprema Succeed Element equals Way Below Closure of Element:

$\ds \bigcap \set {I \in \operatorname {Ids}: x \preceq \sup I} = x^\ll$

where $\operatorname {Ids}$ denotes the set of all ideals in $L$.

For all $I \in \operatorname {Ids}$ define a mapping $m_I: S \to \operatorname {Ids}$:

$\forall x \in S: x \preceq \sup I \implies \map {m_I} x = \set {x \wedge i: i \in I}$

and

$\forall x \in S: x \npreceq \sup I \implies \map {m_I} x = x^\preceq$

By Intersection of Applications of Down Mappings at Element equals Way Below Closure of Element:

$\ds \forall x \in S: \bigcap \set {\map {m_I} x: I \in \operatorname {Ids} } = x^\ll$

We will prove that

$\set {\map {m_I} x: I \in \operatorname {Ids} } \subseteq \set {x^{\RR}: \RR \in \map {\operatorname {App} } L}$

Let $a \in \set {\map {m_I} x: I \in \operatorname {Ids} }$

Then

$\exists I \in \operatorname {Ids}: a = \map {m_I} x$

By Down Mapping is Generated by Approximating Relation:

$\exists \RR \in \map {\operatorname {App} } L: \forall s \in S: \map {m_I} s = s^\RR$

Then

$a = x^\RR$

Thus

$a \in \set {x^\RR: \RR \in \map {\operatorname {App} } L}$

$\Box$


By Intersection of Family is Subset of Intersection of Subset of Family:

$\ds \bigcap \set {x^\RR: \RR \in \map {\operatorname {App} } L} \subseteq x^\ll$

We will prove that

$\set {x^\RR: \RR R \in \map {\operatorname {App} } L} \subseteq \set {I \in \operatorname {Ids}: x \preceq \sup I}$

Let $a \in \set {x^\RR: \RR \in \map {\operatorname {App} } L}$

Then

$\exists \RR \in \map {\operatorname {App} } L: a = x^\RR$

By definition of approximating relation:

$x = \sup a$

By Relation Segment of Auxiliary Relation is Ideal:

$a \in \operatorname {Ids}$

Thus by definition of reflexivity:

$a \in \set {I \in \operatorname {Ids}: x \preceq \sup I}$

$\Box$

By Intersection of Family is Subset of Intersection of Subset of Family:

$\ds x^\ll \subseteq \bigcap \set {x^\RR: \RR \in \map {\operatorname {App} } L}$

Hence the result by definition of set equality.

$\blacksquare$


Sources