Intersection with Normal Subgroup is Normal/Examples/Subset Product of Normal Subgroup with Intersection
Jump to navigation
Jump to search
Example of Use of Intersection with Normal Subgroup is Normal
Let $\struct G$ be a group whose identity is $e$.
Let $H_1, H_2$ be subgroups of $G$.
Let:
- $N_1 \lhd H_1$
- $N_2 \lhd H_2$
where $\lhd$ denotes the relation of being a normal subgroup.
Then:
- $N_1 \paren {H_1 \cap N_2} \lhd N_1 \paren {H_1 \cap H_2}$
Proof
Consider arbitrary $x_n \in N_1, x_h \in H_1 \cap H_2$.
Thus:
- $x_n x_h \in N_1 \paren {H_1 \cap H_2}$
Note that as $x_h \in H_1 \cap H_2$ it follows that $x_h \in H_1$.
We aim to show that:
- $x_n x_h N_1 \paren {H_1 \cap N_2} \paren {x_n x_h}^{-1} \subseteq N_1 \paren {H_1 \cap H_2}$
thus demonstrating $N_1 \paren {H_1 \cap N_2} \lhd N_1 \paren {H_1 \cap H_2}$ by the Normal Subgroup Test.
We have:
\(\ds x_n x_h N_1 \paren {H_1 \cap N_2} \paren {x_n x_h}^{-1}\) | \(=\) | \(\ds x_n x_h N_1 \paren {H_1 \cap N_2} {x_h}^{-1} {x_n}^{-1}\) | Inverse of Group Product | |||||||||||
\(\ds \) | \(=\) | \(\ds x_n x_h N_1 {x_h}^{-1} x_h \paren {H_1 \cap N_2} {x_h}^{-1} {x_n}^{-1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x_n N_1 x_h \paren {H_1 \cap N_2} {x_h}^{-1} {x_n}^{-1}\) | as $N_1 \lhd H_1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds x_n N_1 \paren {H_1 \cap N_2} {x_n}^{-1}\) | $H_1 \cap N_2$ is normal in $H_1$ from Intersection with Normal Subgroup is Normal | |||||||||||
\(\ds \) | \(=\) | \(\ds N_1 \paren {H_1 \cap N_2} {x_n}^{-1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {H_1 \cap N_2} N_1 {x_n}^{-1}\) | Subset Product of Subgroups | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {H_1 \cap N_2} N_1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds N_1 \paren {H_1 \cap N_2}\) | Subset Product of Subgroups |
$\blacksquare$
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Sources
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $2$: Conjugacy, Normal Subgroups, and Quotient Groups: $\S 46 \nu$