Interval Defined by Absolute Value

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\xi, \delta \in \R$ be real numbers.

Let $\delta > 0$.


Then:

Open Interval Defined by Absolute Value

$\set {x \in \R: \size {\xi - x} < \delta} = \openint {\xi - \delta} {\xi + \delta}$

where $\openint {\xi - \delta} {\xi + \delta}$ is the open real interval between $\xi - \delta$ and $\xi + \delta$.


Closed Interval Defined by Absolute Value

$\set {x \in \R: \size {\xi - x} \le \delta} = \closedint {\xi - \delta} {\xi + \delta}$

where $\closedint {\xi - \delta} {\xi + \delta}$ is the closed real interval between $\xi - \delta$ and $\xi + \delta$.