Inverse Cosecant of Imaginary Number

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map {\csc^{-1} } {i x} = i \csch^{-1} x$


Proof

\(\ds y\) \(=\) \(\ds \map {\csc^{-1} } {i x}\)
\(\ds \leadsto \ \ \) \(\ds \csc y\) \(=\) \(\ds i x\) Definition of Inverse Cosecant
\(\ds \leadsto \ \ \) \(\ds i \csc y\) \(=\) \(\ds -x\) $i^2 = -1$
\(\ds \leadsto \ \ \) \(\ds \map \csch {i y}\) \(=\) \(\ds -x\) Cosecant in terms of Hyperbolic Cosecant
\(\ds \leadsto \ \ \) \(\ds i y\) \(=\) \(\ds \map {\csch^{-1} } {-x}\) Definition of Inverse Hyperbolic Cosecant
\(\ds \leadsto \ \ \) \(\ds i y\) \(=\) \(\ds -\csch^{-1} x\) Inverse Hyperbolic Cosecant is Odd Function
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds i \sinh^{-1} x\) multiplying both sides by $-i$

$\blacksquare$


Sources