Inverse Element is Power of Order Less 1
Jump to navigation
Jump to search
Theorem
Let $G$ be a group whose identity is $e$.
Let $g \in G$ be of finite order.
Then:
- $\order g = n \implies g^{n - 1} = g^{-1}$
Proof
\(\ds \order g\) | \(=\) | \(\ds n\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds g^n\) | \(=\) | \(\ds e\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds g^n g^{-1}\) | \(=\) | \(\ds e g^{-1}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds g^{n - 1}\) | \(=\) | \(\ds g^{-1}\) |
$\blacksquare$
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): $\S 5.4$. Cyclic groups: Example $101$
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $3$: Elementary consequences of the definitions: Definition $3.9$: Remark $2$