Inverse Hyperbolic Cosecant is Odd Function

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x \in \R$.

Then:

$\map {\csch^{-1} } {-x} = -\csch^{-1} x$

where $\map {\csch^{-1} } {-x}$ denotes the inverse hyperbolic cosecant function.


Proof

\(\ds \map {\csch^{-1} } {-x}\) \(=\) \(\ds y\)
\(\ds \leadstoandfrom \ \ \) \(\ds -x\) \(=\) \(\ds \csch y\) Definition 1 of Inverse Hyperbolic Cosecant
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(=\) \(\ds -\csch y\)
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(=\) \(\ds \map \csch {-y}\) Hyperbolic Cosecant Function is Odd
\(\ds \leadstoandfrom \ \ \) \(\ds \csch ^{-1} x\) \(=\) \(\ds -y\) Definition 1 of Inverse Hyperbolic Cosecant

$\blacksquare$


Sources