Inverse Hyperbolic Sine Logarithmic Formulation

From ProofWiki
Jump to navigation Jump to search

Theorem



For any complex number $z \in \C$:

$\arsinh z = \map \ln {z + \sqrt {z^2 + 1} }$

where $\arsinh z$ is the inverse hyperbolic sine.


Proof

\(\ds z\) \(=\) \(\ds \sinh \arsinh z\)
\(\ds \leadstoandfrom \ \ \) \(\ds z\) \(=\) \(\ds \frac {e^{\arsinh z} - e^{-\arsinh z} } 2\) Definition of Inverse Hyperbolic Sine
\(\ds \leadstoandfrom \ \ \) \(\ds 2 z e^{\arsinh z}\) \(=\) \(\ds e^{2 \arsinh z} - 1\) Multiplication by $2 e^{\arsinh z}$
\(\ds \leadstoandfrom \ \ \) \(\ds 0\) \(=\) \(\ds e^{2 \arsinh z} - 2 z e^{\arsinh z} - 1\)
\(\ds \leadstoandfrom \ \ \) \(\ds e^{\arsinh z}\) \(=\) \(\ds z + \sqrt {z^2 + 1}\) Quadratic Formula, $e^z > 0, \sqrt {z^2 + 1} > z$
\(\ds \leadstoandfrom \ \ \) \(\ds \arsinh z\) \(=\) \(\ds \map \ln {z + \sqrt {z^2 + 1 } }\)

$\blacksquare$