Inverse for Complex Multiplication/Examples/1+i
Jump to navigation
Jump to search
Example of Inverse for Complex Multiplication
- $\dfrac 1 {1 + i} = \dfrac {1 - i} 2$
Proof
\(\ds \dfrac 1 {1 + i}\) | \(=\) | \(\ds \dfrac {1 - i} {\paren {1 + i} \paren {1 - i} }\) | multiplying top and bottom by $1 - i$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {1 - i} {1^2 + 1^2}\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {1 - i} 2\) | simplifying |
$\blacksquare$