Inverse for Complex Multiplication/Examples/3+2i
Jump to navigation
Jump to search
Example of Inverse for Complex Multiplication
- $\dfrac 1 {3 + 2 i} = \dfrac 3 {13} + \dfrac {2 i} {13}$
Proof
\(\ds \dfrac 1 {3 + 2 i}\) | \(=\) | \(\ds \dfrac {3 - 2 i} {\paren {3 + 2 i} \paren {3 - 2 i} }\) | multiplying top and bottom by $3 - 2 i$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {3 - 2 i} {3^2 + 2^2}\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {3 - 2 i} {13}\) | simplifying |
$\blacksquare$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 1$. Algebraic Theory of Complex Numbers: Exercise $1 \ \text{(ii)}$