Inverse of Commuting Pair
Jump to navigation
Jump to search
Theorem
Let $\struct {S, \circ}$ be a monoid whose identity is $e_S$.
Let $x, y \in S$ such that $x$ and $y$ are both invertible.
Then $x$ commutes with $y$ if and only if:
- $\struct {x \circ y}^{-1} = x^{-1} \circ y^{-1}$
Proof
\(\ds x \circ y\) | \(=\) | \(\ds y \circ x\) | ||||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \struct {x \circ y}^{-1}\) | \(=\) | \(\ds \struct {y \circ x}^{-1}\) | |||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \struct {x \circ y}^{-1}\) | \(=\) | \(\ds x^{-1} \circ y^{-1}\) | Inverse of Product |
$\blacksquare$
Examples
Elements of Symmetric Group $S_3$
Consider the Symmetric Group on $3$ Letters $S_3$, whose Cayley table is given as:
- $\begin{array}{c|cccccc} \circ & e & (123) & (132) & (23) & (13) & (12) \\ \hline e & e & (123) & (132) & (23) & (13) & (12) \\ (123) & (123) & (132) & e & (13) & (12) & (23) \\ (132) & (132) & e & (123) & (12) & (23) & (13) \\ (23) & (23) & (12) & (13) & e & (132) & (123) \\ (13) & (13) & (23) & (12) & (123) & e & (132) \\ (12) & (12) & (13) & (23) & (132) & (123) & e \\ \end{array}$
Let $x = \tuple {1 2 3}$ and $y = \tuple {1 3}$.
We have:
\(\ds \paren {x y}^{-1}\) | \(=\) | \(\ds \paren {\tuple {1 2 3} \tuple {1 3} }^{-1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \tuple {1 2}^{-1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \tuple {1 2}\) |
However:
\(\ds x^{-1} y^{-1}\) | \(=\) | \(\ds \tuple {1 2 3}^{-1} \tuple {1 3}^{-1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \tuple {1 3 2} \tuple {1 3}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \tuple {2 3}\) | ||||||||||||
\(\ds \) | \(\ne\) | \(\ds \paren {x y}^{-1}\) |