Inverse of Commuting Pair/Examples/Elements of Symmetric Group S3
Jump to navigation
Jump to search
Examples of Use of Inverse of Commuting Pair
Consider the Symmetric Group on $3$ Letters $S_3$, whose Cayley table is given as:
- $\begin{array}{c|cccccc} \circ & e & (123) & (132) & (23) & (13) & (12) \\ \hline e & e & (123) & (132) & (23) & (13) & (12) \\ (123) & (123) & (132) & e & (13) & (12) & (23) \\ (132) & (132) & e & (123) & (12) & (23) & (13) \\ (23) & (23) & (12) & (13) & e & (132) & (123) \\ (13) & (13) & (23) & (12) & (123) & e & (132) \\ (12) & (12) & (13) & (23) & (132) & (123) & e \\ \end{array}$
Let $x = \tuple {1 2 3}$ and $y = \tuple {1 3}$.
We have:
\(\ds \paren {x y}^{-1}\) | \(=\) | \(\ds \paren {\tuple {1 2 3} \tuple {1 3} }^{-1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \tuple {1 2}^{-1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \tuple {1 2}\) |
However:
\(\ds x^{-1} y^{-1}\) | \(=\) | \(\ds \tuple {1 2 3}^{-1} \tuple {1 3}^{-1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \tuple {1 3 2} \tuple {1 3}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \tuple {2 3}\) | ||||||||||||
\(\ds \) | \(\ne\) | \(\ds \paren {x y}^{-1}\) |
Sources
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $3$: Elementary consequences of the definitions: Exercise $5$