Inverse of Direct Image Mapping does not necessarily equal Inverse Image Mapping

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ and $T$ be sets.

Let $\RR \subseteq S \times T$ be a relation.

Let $\RR^\to$ be the direct image mapping of $\RR$.

Let $\RR^\gets$ be the inverse image mapping of $\RR$.


Then it is not necessarily the case that:

$\paren {\RR^\to}^{-1} = \RR^\gets$

where $\paren {\RR^\to}^{-1}$ denote the inverse of $\RR^\to$.


That is, the inverse of the direct image mapping of $\RR$ does not always equal the inverse image mapping of $\RR$.


Proof

Proof by Counterexample:

Let $S = T = \set {0, 1}$.

Let $\RR = \set {\tuple {0, 0}, \tuple {0, 1} }$.


We have that:

$\RR^{-1} = \set {\tuple {0, 0}, \tuple {1, 0} }$
$\powerset S = \powerset T = \set {\O, \set 0, \set 1, \set {0, 1} }$


Thus, by inspection:

\(\ds \map {\RR^\to} \O\) \(=\) \(\ds \O\)
\(\ds \map {\RR^\to} {\set 0}\) \(=\) \(\ds \set {0, 1}\)
\(\ds \map {\RR^\to} {\set 1}\) \(=\) \(\ds \O\)
\(\ds \map {\RR^\to} {\set {0, 1} }\) \(=\) \(\ds \set {0, 1}\)


Note that $\paren {\RR^\to}^{-1}$ is the inverse of a mapping which is neither an injection nor a surjection, and so is itself not a mapping from $\powerset T$ to $\powerset S$.

\(\ds \map {\paren {\RR^\to}^{-1} } \O\) \(=\) \(\ds \set {\O, \set 1}\)
\(\ds \map {\paren {\RR^\to}^{-1} } {\set 0}\) \(=\) \(\ds \O\)
\(\ds \map {\paren {\RR^\to}^{-1} } {\set 1}\) \(=\) \(\ds \O\)
\(\ds \map {\paren {\RR^\to}^{-1} } {\set {0, 1} }\) \(=\) \(\ds \set {\set 0, \set {0, 1} }\)


This can be seen to be completely different from $\RR^\gets$, which can be determined by inspection to be:

\(\ds \map {\RR^\gets} \O\) \(=\) \(\ds \O\)
\(\ds \map {\RR^\gets} {\set 0}\) \(=\) \(\ds \set 0\)
\(\ds \map {\RR^\gets} {\set 1}\) \(=\) \(\ds \set 0\)
\(\ds \map {\RR^\gets} {\set {0, 1} }\) \(=\) \(\ds \set 0\)

$\blacksquare$