Inverse of Left-Total Relation is Right-Total
Jump to navigation
Jump to search
Theorem
Let $\RR \subseteq S \times T$ be a relation on $S \times T$.
Let $\RR^{-1} \subseteq T \times S$ be the inverse of $\RR$.
Then:
- $\RR$ is left-total if and only if $\RR^{-1}$ is right-total.
Proof
From Inverse of Inverse Relation, the inverse of $\RR^{-1}$ is $\RR$.
From Inverse of Right-Total Relation is Left-Total:
- $\RR^{-1}$ is right-total if and only if $\RR$ is left-total.
Hence the result.
$\blacksquare$