Inverse of Product of Subsets of Group/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ}$ be a group.

Let $X, Y \subseteq G$.


Then:

$\paren {X \circ Y}^{-1} = Y^{-1} \circ X^{-1}$

where $X^{-1}$ is the inverse of $X$.


Proof

First, note that.

\(\displaystyle \) \(\) \(\displaystyle x \in X, y \in Y\)
\(\displaystyle \) \(\implies\) \(\displaystyle x^{-1} \in X^{-1}, y^{-1} \in Y^{-1}\) Definition of Inverse of Subset of Group
\(\displaystyle \) \(\implies\) \(\displaystyle y^{-1} \circ x^{-1} \in Y^{-1} \circ X^{-1}\) Definition of Subset Product


Now:

\(\displaystyle x \circ y\) \(\in\) \(\displaystyle X \circ Y\) Definition of Subset Product
\(\displaystyle \implies \ \ \) \(\displaystyle \left({x \circ y}\right)^{-1}\) \(\in\) \(\displaystyle \left({X \circ Y}\right)^{-1}\) Definition of Inverse of Subset of Group
\(\displaystyle \implies \ \ \) \(\displaystyle y^{-1} \circ x^{-1}\) \(\in\) \(\displaystyle \left({X \circ Y}\right)^{-1}\) Inverse of Group Product
\(\displaystyle \implies \ \ \) \(\displaystyle Y^{-1} \circ X^{-1}\) \(\subseteq\) \(\displaystyle \left({X \circ Y}\right)^{-1}\) Definition of Subset


By a similar argument we see that $\left({X \circ Y}\right)^{-1} \subseteq Y^{-1} \circ X^{-1}$.


Hence the result.

$\blacksquare$