# Inverses for Real Multiplication

Jump to navigation
Jump to search

## Theorem

Each element $x$ of the set of non-zero real numbers $\R_{\ne 0}$ has an inverse element $\dfrac 1 x$ under the operation of real number multiplication:

- $\forall x \in \R_{\ne 0}: \exists \dfrac 1 x \in \R_{\ne 0}: x \times \dfrac 1 x = 1 = \dfrac 1 x \times x$

## Proof

By the definition of real number:

- $\forall \epsilon > 0 : \exists t \in \N : \forall i > t: \size {x_i - x} < \epsilon$

Let $\epsilon = \size x$. This is possible because $x \ne 0$, since it is required that $\epsilon > 0$.

\(\displaystyle \exists t \in \N : \forall i > t : \ \ \) | \(\displaystyle \size {x_i - x}\) | \(<\) | \(\displaystyle \size x\) | ||||||||||

\(\displaystyle \leadsto \ \ \) | \(\displaystyle \exists t \in \N : \forall i > t : \ \ \) | \(\displaystyle \size {x_i - x}\) | \(<\) | \(\displaystyle \size {x_i - x} + \size {x_i}\) | Triangle Inequality for Real Numbers | ||||||||

\(\displaystyle \leadsto \ \ \) | \(\displaystyle \exists t \in \N : \forall i > t : \ \ \) | \(\displaystyle \size {x_i}\) | \(>\) | \(\displaystyle 0\) |

Construct a sequence $\sequence {y_n}$ as follows:

- $y_n = \begin {cases} \dfrac 1 {x_n} & n > t \\ 0 & n \le t \end {cases}$

Let $u_n$ denote the Heaviside step function with parameter $t$.

We have:

\(\displaystyle \eqclass {\sequence {x_n} } {} \times \eqclass {\sequence {y_n} } {}\) | \(=\) | \(\displaystyle \eqclass {\sequence {x_n y_n} } {}\) | |||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle \eqclass {\sequence {u_n} } {}\) | |||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle 1\) |

Similarly for $\eqclass {\sequence {y_n} } {} \times \eqclass {\sequence {x_n} } {}$.

So the inverse of $x \in \struct {\R_{\ne 0}, \times}$ is $x^{-1} = \dfrac 1 x = y$.

$\blacksquare$