# Invertible Element of Associative Structure is Cancellable

 It has been suggested that this page or section be merged into Invertible Element of Monoid is Cancellable. (Discuss)

## Theorem

Let $\left({S, \circ}\right)$ be an algebraic structure where $\circ$ is associative.

Let $\left({S, \circ}\right)$ have an identity element $e_S$.

An element of $\left({S, \circ}\right)$ which is invertible is also cancellable.

### Corollary

Let $\left({S, \circ}\right)$ be a monoid whose identity is $e_S$.

An element of $\left({S, \circ}\right)$ which is invertible is also cancellable.

## Proof

Let $a \in S$ be invertible.

Suppose $a \circ x = a \circ y$.

Then:

 $\ds x$ $=$ $\ds e_S \circ x$ Behaviour of Identity $\ds$ $=$ $\ds \left({a^{-1} \circ a}\right) \circ x$ Behaviour of Inverse $\ds$ $=$ $\ds a^{-1} \circ \left({a \circ x}\right)$ Associativity of $\circ$ $\ds$ $=$ $\ds a^{-1} \circ \left({a \circ y}\right)$ By Hypothesis $\ds$ $=$ $\ds \left({a^{-1} \circ a}\right) \circ y$ [Definition:Associative Operation $\ds$ $=$ $\ds e_S \circ y$ Behaviour of Inverse $\ds$ $=$ $\ds y$ Behaviour of Identity

A similar argument shows that $x \circ a = y \circ a \implies x = y$.

$\blacksquare$