Join Operation on Ordered Set such that Every Doubleton admits Supremum is Entropic
Jump to navigation
Jump to search
Theorem
Let $\struct {S, \preccurlyeq}$ be an ordered set.
Let $\struct {S, \preccurlyeq}$ be such that every doubleton subset of $S$ admits a supremum.
Let $\vee$ be the join operation on $S$, defined as:
- $\forall a, b \in S: a \vee b = \sup_\preccurlyeq \set {a, b}$
Then $\vee$ is an entropic operation.
Proof
By definition, $\struct {S, \vee, \preccurlyeq}$ is a join semilattice.
From Join Semilattice is Semilattice, $\struct {S, \vee, \preccurlyeq}$ is indeed a semilattice.
Then:
\(\ds \forall a, b, c, d, \in S: \, \) | \(\ds \paren {a \vee b} \vee \paren {c \vee d}\) | \(=\) | \(\ds a \vee \paren {\paren {b \vee c} \vee d}\) | Semilattice Axiom $\text {SL} 1$: Associativity | ||||||||||
\(\ds \) | \(=\) | \(\ds a \vee \paren {\paren {c \vee b} \vee d}\) | Semilattice Axiom $\text {SL} 2$: Commutativity | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a \vee c} \vee \paren {b \vee d}\) | Semilattice Axiom $\text {SL} 1$: Associativity |
$\blacksquare$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {III}$: The Natural Numbers: $\S 14$: Orderings: Exercise $14.24$