Jordan's Lemma

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $r > 0$ be a real number.

Let:

$C_r = \set {r e^{i \theta}: 0 \le \theta \le \pi}$

Let $g : C_r \to \C$ be a continuous function.

Define $f : C_r \to \C$ by:

$\map f z = e^{i a z} \map g z$

for each $z \in C_r$, for some real number $a > 0$.


Then:

$\ds \size {\int_{C_r} \map f z \rd z} \le \frac \pi a \paren {\max_{0 \mathop \le \theta \mathop \le \pi} \size {\map g {r e^{i \theta} } } }$


Proof

We have:

\(\ds \size {\int_{C_r} \map f z \rd z}\) \(=\) \(\ds \size {\int_{C_r} e^{i a z} \map g z \rd z}\)
\(\ds \) \(=\) \(\ds \size {i r} \size {\int_0^\pi e^{i a r e^{i \theta} } \map g {r e^{i \theta} } e^{i \theta} \rd \theta}\) Definition of Complex Contour Integral
\(\ds \) \(=\) \(\ds \size {i r} \size {\int_0^\pi e^{i a r \paren {i \sin \theta + \cos \theta} } \map g {r e^{i \theta} } e^{i \theta} \rd \theta}\) Euler's Formula
\(\ds \) \(=\) \(\ds r \size {\int_0^\pi e^{a r \paren {i \cos \theta - \sin \theta} } \map g {r e^{i \theta} } e^{i \theta} \rd \theta}\) $i^2 = -1$, $\size i = 1$
\(\ds \) \(\le\) \(\ds r \int_0^\pi \size {e^{i a r \cos \theta} } \size {e^{-a r \sin \theta} } \size {\map g {r e^{i \theta} } } \size {e^{i \theta} } \rd \theta\) Modulus of Complex Integral
\(\ds \) \(=\) \(\ds r \int_0^\pi e^{-a r \sin \theta} \size {\map g {r e^{i \theta} } } \rd \theta\) $\size {e^{i \theta} } = 1$ for real $\theta$
\(\ds \) \(\le\) \(\ds r \int_0^\pi e^{-a r \sin \theta} \max_{0 \le \theta \le \pi} \size {\map g {r e^{i \theta} } } \rd \theta\) Definition of Supremum of Real-Valued Function

From Definite Integral of Constant Multiple of Real Function, we can write:

$\ds r \int_0^\pi e^{-a r \sin \theta} \max_{0 \le \theta \le \pi} \size {\map g {r e^{i \theta} } } \rd \theta = r \paren {\max_{0 \le \theta \le \pi} \size {\map g {r e^{i \theta} } } } \int_0^\pi e^{-a r \sin \theta} \rd \theta$

We now focus on:

$\ds \int_0^\pi e^{-a r \sin \theta} \rd \theta$

We have:

\(\ds \int_0^\pi e^{-a r \sin \theta} \rd \theta\) \(=\) \(\ds \int_0^{\pi/2} e^{-a r \sin \theta} \rd \theta + \int_{\pi/2}^\pi e^{-a r \sin \theta} \rd \theta\) Sum of Integrals on Adjacent Intervals for Integrable Functions
\(\ds \) \(=\) \(\ds \int_0^{\pi/2} e^{-a r \sin \theta} \rd \theta - \int_{\pi/2}^0 e^{-a r \map \sin {\pi - \theta} } \rd \theta\) substituting $\theta \mapsto \pi - \theta$]]
\(\ds \) \(=\) \(\ds \int_0^{\pi/2} e^{-a r \sin \theta} \rd \theta + \int_0^{\pi/2} e^{-a r \sin \theta} \rd \theta\) Sine of Angle plus Integer Multiple of Pi, Sine Function is Odd
\(\ds \) \(=\) \(\ds 2 \int_0^{\pi/2} e^{-a r \sin \theta} \rd \theta\)

Note that we also have, from Jordan's Inequality:

$\sin \theta \ge \dfrac {2 \theta} \pi$

We therefore have:

\(\ds 2 \int_0^{\pi/2} e^{-a r \sin \theta} \rd \theta\) \(\le\) \(\ds 2 \int_0^\pi e^{-\paren {2 a r \theta} / \pi} \rd \theta\)
\(\ds \) \(=\) \(\ds 2 \intlimits {-\frac {\pi e^{\paren {2 a r \theta} / \pi} } {2 a r} } 0 \pi\) Primitive of Exponential of a x, Fundamental Theorem of Calculus
\(\ds \) \(=\) \(\ds \frac {\pi \paren {1 - e^{-2 a r} } } {a r}\)
\(\ds \) \(\le\) \(\ds \frac \pi {a r}\) $e^{-a r} < 1$ for positive $a, r$

So:

\(\ds \size {\int_{C_r} \map f z \rd z}\) \(\le\) \(\ds r \paren {\max_{0 \le \theta \le \pi} \size {\map g {r e^{i \theta} } } } \int_0^\pi e^{-a r \sin \theta} \rd \theta\)
\(\ds \) \(\le\) \(\ds \frac \pi {a r} \times r \times \paren {\max_{0 \le \theta \le \pi} \size {\map g {r e^{i \theta} } } }\)
\(\ds \) \(=\) \(\ds \frac \pi a \paren {\max_{0 \le \theta \le \pi} \size {\map g {r e^{i \theta} } } }\)

$\blacksquare$


Also see


Source of Name

This entry was named for Marie Ennemond Camille Jordan.