Knaster-Tarski Lemma/Corollary/Power Set/Proof 1

From ProofWiki
Jump to navigation Jump to search


Let $S$ be a set.

Let $\powerset S$ be the power set of $S$.

Let $f: \powerset S \to \powerset S$ be a $\subseteq$-increasing mapping.

That is, suppose that for all $T, U \in \powerset S$:

$T \subseteq U \implies \map f T \subseteq \map f U$

Then $f$ has a fixed point.


By the Knaster-Tarski Lemma: Power Set, $f$ has a least fixed point.

Thus it has a fixed point.


Source of Name

This entry was named for BronisÅ‚aw Knaster and Alfred Tarski.