LCM from Prime Decomposition/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a, b \in \Z$.

From Expression for Integers as Powers of Same Primes, let:

\(\ds a\) \(=\) \(\ds p_1^{k_1} p_2^{k_2} \ldots p_r^{k_r}\)
\(\ds b\) \(=\) \(\ds p_1^{l_1} p_2^{l_2} \ldots p_r^{l_r}\)
\(\ds \forall i \in \set {1, 2, \dotsc, r}: \, \) \(\ds p_i\) \(\divides\) \(\ds a\)
\(\, \ds \lor \, \) \(\ds p_i\) \(\divides\) \(\ds b\)


That is, the primes given in these prime decompositions may be divisors of either of the numbers $a$ or $b$.


Then:

$\lcm \set {a, b} = p_1^{\max \set {k_1, l_1} } p_2^{\max \set {k_2, l_2} } \ldots p_r^{\max \set {k_r, l_r} }$

where $\lcm \set {a, b}$ denotes the lowest common multiple of $a$ and $b$.


Proof

\(\ds \lcm \set {a, b}\) \(=\) \(\ds \frac {a b} {\gcd \set {a, b} }\) Product of GCD and LCM
\(\ds \) \(=\) \(\ds \frac {\paren {p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r} } \paren {p_1^{l_1} p_2^{l_2} \ldots p_r^{l_r} } } {p_1^{\min \set {k_1, l_1} } p_2^{\min \set {k_2, l_2} } \cdots p_r^{\min \set {k_r, l_r} } }\) GCD from Prime Decomposition
\(\ds \) \(=\) \(\ds \frac {\paren {p_1^{k_1 + l_1} p_2^{k_2 + l_2} \cdots p_r^{k_r + l_r} } } {p_1^{\min \set {k_1, l_1} } p_2^{\min \set {k_2, l_2} } \cdots p_r^{\min \set {k_r, l_r} } }\)
\(\ds \) \(=\) \(\ds p_1^{k_1 + l_1 - \min \set {k_1, l_1} } p_2^{k_2 + l_2 - \min \set {k_2, l_2} } \cdots p_r^{k_r + l_r - \min \set {k_r, l_r} }\)
\(\ds \) \(=\) \(\ds p_1^{\max \set {k_1, l_1} } p_2^{\max \set {k_2, l_2} } \cdots p_r^{\max \set {k_r, l_r} }\) Sum Less Minimum is Maximum

$\blacksquare$