Laplace Transform of Constant Mapping/Examples/Example 1

From ProofWiki
Jump to navigation Jump to search

Example of Laplace Transform of Constant Mapping

Let $\map f t$ be the real function defined as:

$\forall t \in \R: \map f t = \begin {cases} 0 & : t < 0 \\ 5 & : 0 \le t < 3 \\ 0 & : t \ge 3 \end {cases}$


Then the Laplace transform of $f$ is given by:

$\laptrans {\map f t} = \dfrac {5 \paren {1 - e^{-3 s} } } s$


Proof

\(\ds \laptrans {\map f t}\) \(=\) \(\ds \int_0^\infty e^{-s t} \map f t \rd t\)
\(\ds \) \(=\) \(\ds \int_0^3 5 e^{-s t} \rd t + \int_3^\infty 0 e^{-s t} \rd t\) Definition of $\map f t$
\(\ds \) \(=\) \(\ds \intlimits {\dfrac {5 e^{-s t} } {-s} } 0 3 + 0\) Primitive of $e^{a x}$
\(\ds \) \(=\) \(\ds \dfrac {5 e^{-3 s} - 5 e^0} {-s}\)
\(\ds \) \(=\) \(\ds \dfrac {5 \paren {1 - e^{-3 s} } } s\) simplifying

$\blacksquare$


Sources