Laplace Transform of Error Function
Jump to navigation
Jump to search
Theorem
- $\laptrans {\map \erf t} = \dfrac 1 s \map \exp {\dfrac {s^2} 4} \map \erfc {\dfrac s 2}$
where:
- $\laptrans f$ denotes the Laplace transform of the function $f$
- $\erf$ denotes the error function
- $\erfc$ denotes the complementary error function
- $\exp$ denotes the exponential function.
Proof
By Derivative of Error Function, we have:
- $\ds \map {\frac \d {\d t} } {\map \erf t} = \frac 2 {\sqrt \pi} e^{-t^2}$
By Primitive of Exponential Function, we have:
- $\ds \int e^{-s t} \rd t = -\frac {e^{-s t} } s$
So:
\(\ds \laptrans {\map \erf t}\) | \(=\) | \(\ds \int_0^\infty e^{-s t} \map \erf t \rd t\) | Definition of Laplace Transform | |||||||||||
\(\ds \) | \(=\) | \(\ds \intlimits {-\frac 1 s e^{-s t} \map \erf t} 0 \infty - \int_0^\infty \paren {-\frac 2 {\sqrt \pi} \frac {e^{-s t} } s e^{-t^2} } \rd t\) | Integration by Parts | |||||||||||
\(\ds \) | \(=\) | \(\ds -\frac 1 s \lim_{t \mathop \to \infty} \paren {e^{-s t} \map \erf t} + \frac 1 s e^0 \erf 0 + \frac 2 {s \sqrt \pi} \int_0^\infty \exp \paren {-s t - t^2} \rd t\) |
We have:
\(\ds \lim_{t \mathop \to \infty} \paren {e^{-s t} \map \erf t}\) | \(=\) | \(\ds \paren {\lim_{t \mathop \to \infty} e^{-s t} } \paren {\lim_{t \mathop \to \infty} \map \erf t}\) | Product Rule for Limits of Real Functions | |||||||||||
\(\ds \) | \(=\) | \(\ds 0 \times 1\) | Exponential Tends to Zero and Infinity, Limit to Infinity of Error Function | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
We also have:
\(\ds \frac 1 s e^0 \erf 0\) | \(=\) | \(\ds \frac 1 s \int_0^0 e^{-t^2} \rd t\) | Exponential of Zero, Definition of Error Function | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) | Definite Integral on Zero Interval |
Therefore:
\(\ds \laptrans {\map \erf t}\) | \(=\) | \(\ds \frac 2 {s \sqrt \pi} \int_0^\infty \map \exp {-\paren {t^2 + s t} } \rd t\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 {s \sqrt \pi} \int_0^\infty \map \exp {-\paren {\paren {t + \frac s 2}^2 - \frac {s^2} 4} } \rd t\) | completing the square | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 {s \sqrt \pi} \map \exp {\frac {s^2} 4} \int_0^\infty \map \exp {-\paren {t + \frac s 2}^2} \rd t\) | Exponential of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 2 {s \sqrt \pi} \map \exp {\frac {s^2} 4} \int_{\frac s 2}^\infty \map \exp {-u^2} \rd u\) | substituting $u = t + \dfrac s 2$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 s \map \exp {\frac {s^2} 4} \paren {\frac 2 {\sqrt \pi} \int_{\frac s 2}^\infty \map \exp {-u^2} \rd u}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 s \map \exp {\frac {s^2} 4} \map \erfc {\frac s 2}\) | Definition of Complementary Error Function |
$\blacksquare$
Sources
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Chapter $1$: The Laplace Transform: Laplace Transforms of Special Functions: $6$