Laplace Transform of Hyperbolic Cosine/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\cosh t$ be the hyperbolic cosine, where $t$ is real.

Let $\laptrans f$ denote the Laplace transform of the real function $f$.


Then:

$\laptrans {\cosh a t} = \dfrac s {s^2 - a^2}$

where $a \in \R_{>0}$ is constant, and $\map \Re s > a$.


Proof

\(\ds \laptrans {\cosh {a t} }\) \(=\) \(\ds \int_0^{\to +\infty} e^{-s t} \cosh {a t} \rd t\) Definition of Laplace Transform
\(\ds \) \(=\) \(\ds \intlimits {\frac {e^{-s t} \paren {-s \cosh a t + a \sinh a t} } {\paren {-s}^2 - a^2} } {t \mathop = 0} {t \mathop \to +\infty}\) Primitive of $e^{a x} \cosh b x$
\(\ds \) \(=\) \(\ds 0 - \frac {-s \, \map \cosh {0 \times a} + a \, \map \sinh {0 \times a} } {s^2 - a^2}\) Exponential Tends to Zero, Exponential of Zero
\(\ds \) \(=\) \(\ds \frac {s \cosh 0 - a \sinh 0} {s^2 - a^2}\) simplifying
\(\ds \) \(=\) \(\ds \frac s {s^2 - a^2}\) Hyperbolic Sine of Zero is Zero, Hyperbolic Cosine of Zero is One