Laplace Transform of Identity Mapping/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\laptrans f$ denote the Laplace transform of a function $f$.

Let $\map {I_\R} t$ denote the identity mapping on $\R$ for $t > 0$.


Then:

$\laptrans {\map {I_\R} t} = \dfrac 1 {s^2}$

for $\map \Re s > 0$.


Proof

From Laplace Transform of Derivative:

$(1): \quad \laptrans {\map {I_\R'} t} = s \laptrans {\map {I_\R} t} - \map {I_\R} 0$

under suitable conditions.


Then:

\(\ds \map {I_\R} t\) \(=\) \(\ds t\)
\(\ds \leadsto \ \ \) \(\ds \map {I_\R'} t\) \(=\) \(\ds 1\)
\(\ds \map {I_\R} 0\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \laptrans 1\) \(=\) \(\ds \dfrac 1 s\) Laplace Transform of 1
\(\ds \) \(=\) \(\ds s \laptrans {\map {I_\R} t} - 0\) from $(1)$, substituting for $\map f t$ and $\map f 0$
\(\ds \leadsto \ \ \) \(\ds s \laptrans {\map {I_\R} t}\) \(=\) \(\ds \dfrac 1 s\)
\(\ds \leadsto \ \ \) \(\ds \laptrans {\map {I_\R} t}\) \(=\) \(\ds \dfrac 1 {s^2}\)

$\blacksquare$


Sources