Law of Mass Action
Theorem
Let $\AA$ and $\BB$ be two chemical substances in a solution $C$ which are involved in a second-order reaction.
Let $x$ grams of $\CC$ contain $a x$ grams of $\AA$ and $b x$ grams of $\BB$, where $a + b = 1$.
Let there be $a A$ grams of $\AA$ and $b B$ grams of $\BB$ at time $t = t_0$, at which time $x = 0$.
Then:
- $x = \begin{cases} \dfrac {k A^2 a b t} {k A a b t + 1} & : A = B \\ & \\ \dfrac {A B e^{-k \paren {A - B} a b t}} {A - B e^{-k \paren {A - B} a b t}} & : A \ne B \end{cases}$
for some positive real constant $k$.
This is known as the law of mass action
Proof
By the definition of a second-order reaction:
- The rate of formation of $\CC$ is jointly proportional to the quantities of $\AA$ and $\BB$ which have not yet transformed.
By definition of joint proportion:
- $\dfrac {\d x} {\d t} \propto \paren {A - x} a \paren {B - x} b$
or:
- $\dfrac {\d x} {\d t} = k a b \paren {A - x} \paren {B - x}$
for some positive real constant $k$.
Thus:
\(\ds \int \d t\) | \(=\) | \(\ds \int \frac {\d x} {k a b \paren {A - x} \paren {B - x} }\) | Separation of Variables | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds k a b t\) | \(=\) | \(\ds \int \frac {\d x} {\paren {A - B} \paren {B - x} } + \int \frac {\d x} {\paren {B - A} \paren {A - x} }\) | Partial Fractions | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {A - B} k a b t\) | \(=\) | \(\ds \int \frac {\d x} {A - x} - \int \frac {\d x} {B - x}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {A - B} k a b t\) | \(=\) | \(\ds \map \ln {\frac {A - x} {B - x} } + C_1\) | $C_1$ is an arbitrary constant | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds -k \paren {A - B} a b t\) | \(=\) | \(\ds \map \ln {\frac {B - x} {A - x} } + C_2\) | $C_2$ is another arbitrary constant: $C_2 = -C_1$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds C e^{-k \paren {A - B} a b t}\) | \(=\) | \(\ds \frac {B - x} {A - x}\) | $C$ is another arbitrary constant | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds C \paren {A - x} e^{-k \paren {A - B} a b t}\) | \(=\) | \(\ds B - x\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x \paren {1 - C e^{-k \paren {A - B} a b t} }\) | \(=\) | \(\ds B - A C e^{-k \paren {A - B}) a b t}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds \frac {B - A C e^{-k \paren {A - B} a b t} } {1 - C e^{-k \paren {A - B} a b t} }\) |
Note that in the above, we have to assume that $A \ne B$ or the integrals on the right hand side will not be defined.
We will look later at how we handle the situation when $A = B$.
We are given the initial conditions $x = 0$ at $t = 0$. Thus:
\(\ds 0\) | \(=\) | \(\ds \frac {B - A C} {1 - C}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds B\) | \(=\) | \(\ds A C\) | (assuming $C \ne 1$) | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds C\) | \(=\) | \(\ds \frac B A\) |
Our assumption that $C \ne 1$ is justified, because that only happens when $A = B$, and we have established that this is not the case.
So, we now have:
\(\ds x\) | \(=\) | \(\ds \frac {B - A \paren {B / A} e^{-k \paren {A - B} a b t} } {1 - \paren {B / A} e^{-k \paren {A - B} a b t} }\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds \frac {A B e^{-k \paren {A - B} a b t} } {A - B e^{-k \paren {A - B} a b t} }\) |
Now we can investigate what happens when $A = B$.
We need to solve:
- $\dfrac {\d x} {\d t} = k a b \paren {A - x} \paren {A - x} = k a b \paren {A - x}^2$
So:
\(\ds \frac {\d x} {\d t}\) | \(=\) | \(\ds k a b \paren {A - x}^2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int k a b \rd t\) | \(=\) | \(\ds \int \frac {\d x} {\paren {A - x}^2}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds k a b t\) | \(=\) | \(\ds \frac 1 {A - x} + C\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {A - x} k a b t\) | \(=\) | \(\ds 1 + C \paren {A - x}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds A k a b t - x k a b t\) | \(=\) | \(\ds 1 + C A - C x\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x \paren {C - k a b t}\) | \(=\) | \(\ds 1 + C A - A k a b t\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds \frac {1 + C A - A k a b t} {C - k a b t}\) |
We are given the initial conditions $x = 0$ at $t = 0$.
Thus:
\(\ds 0\) | \(=\) | \(\ds \frac {1 + C A - 0} {C - 0}\) | assuming $C \ne 0$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds 1 + C A\) | \(=\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds C\) | \(=\) | \(\ds -1 / A\) | confirming that $C \ne 0$ as we had assumed |
This gives us:
\(\ds x\) | \(=\) | \(\ds \frac {1 + \paren {-1 / A} A - A k a b t} {\paren {-1 / A} - k a b t}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds \frac {A k a b t} {\frac 1 A + k a b t}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds \frac {k A^2 a b t} {k A a b t + 1}\) |
So:
- $x = \begin{cases} \dfrac {k A^2 a b t} {k A a b t + 1} & : A = B \\ & \\ \dfrac {A B e^{-k \paren {A - B} a b t} } {A - B e^{-k \paren {A - B} a b t} } & : A \ne B \end{cases}$
$\blacksquare$
Sources
- 1972: George F. Simmons: Differential Equations ... (previous) ... (next): $1$: The Nature of Differential Equations: $\S 4$: Growth, Decay and Chemical Reactions: Problem $1$