Left-Hand Differentiable Function is Left-Continuous

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $f$ be a real function defined on an interval $I$.

Let $a$ be a point in $I$ where $f$ is left-hand differentiable.


Then $f$ is left-continuous at $a$.


Proof

By hypothesis, $\map {f'_-} a$ exists.

First we note that $a$ cannot be the left-hand end point of $I$ because values in $I$ less than $a$ need to exist for $\map {f'_-} a$ to exist.


We form the following expression:

$\ds \lim_{x \mathop \to a^-} \paren {\map f x - \map f a}$

We need to show that it is defined and to find its value.


We find:

\(\ds \) \(\) \(\ds \lim_{x \mathop \to a^-} \paren {\map f x - \map f a}\)
\(\ds \) \(=\) \(\ds \lim_{x \mathop \to a^-} \paren {\frac {\map f x - \map f a} {x - a} \paren {x - a} }\) where the denominator is unequal to $0$ since $x < a$
\(\ds \) \(=\) \(\ds \lim_{x \mathop \to a^-} \paren {\frac {\map f x - \map f a} {x - a} } \lim_{x \mathop \to a^-} \paren {x - a}\) Product Rule for Limits of Real Functions since (see the next step) the two limits exist
\(\ds \) \(=\) \(\ds \map {f'_-} a \times 0\) Definition of Left-Hand Derivative
\(\ds \) \(=\) \(\ds 0\)

Note that this proves that $\ds \lim_{x \mathop \to a^-} \paren {\map f x - \map f a}$ exists.


We continue by manipulating the result above:

\(\ds \lim_{x \mathop \to a^-} \paren {\map f x - \map f a}\) \(=\) \(\ds 0\)
\(\ds \leadstoandfrom \ \ \) \(\ds \lim_{x \mathop \to a^-} \paren {\map f x - \map f a} + \map f a - \map f a\) \(=\) \(\ds 0\)
\(\ds \leadstoandfrom \ \ \) \(\ds \lim_{x \mathop \to a^-} \paren {\map f x - \map f a} + \lim_{x \mathop \to a^-} \map f a - \map f a\) \(=\) \(\ds 0\)
\(\ds \leadstoandfrom \ \ \) \(\ds \lim_{x \mathop \to a^-} \paren {\map f x - \map f a + \map f a} - \map f a\) \(=\) \(\ds 0\) Sum Rule for Limits of Real Functions since the two limits in the previous expression exist
\(\ds \leadstoandfrom \ \ \) \(\ds \lim_{x \mathop \to a^-} \map f x - \map f a\) \(=\) \(\ds 0\)
\(\ds \leadstoandfrom \ \ \) \(\ds \lim_{x \mathop \to a^-} \map f x\) \(=\) \(\ds \map f a\)

which means that $f$ is left-continuous at $a$.

$\blacksquare$