# Left Regular Representation wrt Left Cancellable Element on Finite Semigroup is Bijection

Jump to navigation
Jump to search

## Theorem

Let $\struct {S, \circ}$ be a finite semigroup.

Let $a \in S$ be left cancellable.

Then the left regular representation $\lambda_a$ of $\struct {S, \circ}$ with respect to $a$ is a bijection.

## Proof

By Left Cancellable iff Left Regular Representation Injective, $\lambda_a$ is an injection.

By hypothesis, $S$ is finite.

From Injection from Finite Set to Itself is Surjection, $\lambda_a$ is a surjection.

Thus $\lambda_a$ is injective and surjective, and therefore a bijection.

$\blacksquare$