Legendre Symbol is Multiplicative

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $p$ be a odd prime.

Let $a, b \in \Z$.


Then:

$\paren {\dfrac {a b} p} = \paren {\dfrac a p} \paren {\dfrac b p}$

where $\paren {\dfrac a p}$ is the Legendre symbol.


Proof

We have:

\(\ds \paren {\frac {a b} p}\) \(=\) \(\ds \paren {a b}^{\frac {p - 1} 2} \bmod p\) Definition 2 of Legendre Symbol
\(\ds \) \(=\) \(\ds a^{\frac {p - 1} 2} b^{\frac {p - 1} 2} \bmod p\) Power of Product
\(\ds \) \(=\) \(\ds \paren {\frac a p} \paren {\frac b p}\) Definition 2 of Legendre Symbol, Congruence of Product

$\blacksquare$