Leigh.Samphier/Sandbox/Definition:Base Axiom (Matroid)
Jump to navigation
Jump to search
Definition
Let $S$ be a finite set.
Let $\mathscr B$ be a non-empty set of subsets of $S$.
Definition 1
$\mathscr B$ is said to satisfy the base axiom if and only if:
\((\text B 1)\) | $:$ | \(\displaystyle \forall B_1, B_2 \in \mathscr B:\) | \(\displaystyle x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_1 \setminus \set x} \cup \set y \in \mathscr B \) |
Definition 2
$\mathscr B$ is said to satisfy the base axiom if and only if:
\((\text B 2)\) | $:$ | \(\displaystyle \forall B_1, B_2 \in \mathscr B:\) | \(\displaystyle x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_1 \cup \set y} \setminus \set x \in \mathscr B \) |
Definition 3
$\mathscr B$ is said to satisfy the base axiom if and only if:
\((\text B 3)\) | $:$ | \(\displaystyle \forall B_1, B_2 \in \mathscr B:\) | \(\displaystyle \exists \text{ a bijection } \pi : B_1 \setminus B_2 \to B_2 \setminus B_1 : \forall x \in B_1 \setminus B_2 : \paren {B_1 \setminus \set x } \cup \set {\map \pi x} \in \mathscr B \) |
Definition 4
$\mathscr B$ is said to satisfy the base axiom if and only if:
\((\text B 4)\) | $:$ | \(\displaystyle \forall B_1, B_2 \in \mathscr B:\) | \(\displaystyle x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_1 \setminus \set x} \cup \set y, \paren {B_2 \setminus \set y} \cup \set x \in \mathscr B \) |
Definition 5
$\mathscr B$ is said to satisfy the base axiom if and only if:
\((\text B 5)\) | $:$ | \(\displaystyle \forall B_1, B_2 \in \mathscr B:\) | \(\displaystyle x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_2 \setminus \set y} \cup \set x \in \mathscr B \) |
Definition 6
$\mathscr B$ is said to satisfy the base axiom if and only if:
\((\text B 6)\) | $:$ | \(\displaystyle \forall B_1, B_2 \in \mathscr B:\) | \(\displaystyle x \in B_1 \setminus B_2 \implies \exists y \in B_2 \setminus B_1 : \paren {B_2 \cup \set x} \setminus \set y \in \mathscr B \) |
Definition 7
$\mathscr B$ is said to satisfy the base axiom if and only if:
\((\text B 7)\) | $:$ | \(\displaystyle \forall B_1, B_2 \in \mathscr B:\) | \(\displaystyle \exists \text{ a bijection } \pi : B_1 \setminus B_2 \to B_2 \setminus B_1 : \forall x \in B_1 \setminus B_2 : \paren {B_2 \setminus \set {\map \pi x} } \cup \set x \in \mathscr B \) |
See also
Leigh.Samphier/Sandbox/Equivalence of Definitions of Matroid Base Axiom