Leigh.Samphier/Sandbox/Definition:Base Axiom (Matroid)/Definition 7

From ProofWiki
Jump to navigation Jump to search


Let $S$ be a finite set.

Let $\mathscr B$ be a non-empty set of subsets of $S$.

$\mathscr B$ is said to satisfy the base axiom if and only if:

\((\text B 7)\)   $:$     \(\displaystyle \forall B_1, B_2 \in \mathscr B:\) \(\displaystyle \exists \text{ a bijection } \pi : B_1 \setminus B_2 \to B_2 \setminus B_1 : \forall x \in B_1 \setminus B_2 : \paren {B_2 \setminus \set {\map \pi x} } \cup \set x \in \mathscr B \)