Leigh.Samphier/Sandbox/Equivalence of Definitions of Matroid Rank Axioms/Condition 1 Implies Condition 3/Lemma 2

From ProofWiki
Jump to navigation Jump to search


Let $S$ be a finite set.

Let $\rho : \powerset S \to \Z$ be a mapping from the power set of $S$ to the integers.

Let $\rho$ satisfy the rank axioms:

\((\text R 1)\)   $:$   \(\ds \map \rho \O = 0 \)             
\((\text R 2)\)   $:$     \(\ds \forall X \in \powerset S \land y \in S:\) \(\ds \map \rho X \le \map \rho {X \cup \set y} \le \map \rho X + 1 \)             
\((\text R 3)\)   $:$     \(\ds \forall X \in \powerset S \land y, z \in S:\) \(\ds \map \rho {X \cup \set y} = \map \rho {X \cup \set z} = \map \rho X \implies \map \rho {X \cup \set y \cup \set z} = \map \rho X \)             


$\forall A \subseteq S: \map \rho A \le \card A$


Aiming for a contradiction, suppose:

$\exists A \subseteq S : \map \rho A > \card A$


$A_0 \subseteq S : \card{A_0} = \min \set{\card A : \map \rho A > \card A}$

We have:

\(\ds \map \rho \O\) \(=\) \(\ds 0\) Rank axiom $(\text R 1)$
\(\ds \) \(=\) \(\ds \card \O\) Cardinality of Empty Set


$A_0 \ne \O$

Let $y \in A_0$.

From Cardinality of Set Difference:

$\card {A_0 \setminus \set y} = \card{A_0} - 1 < \card {A_0}$

We have:

\(\ds \map \rho {A_0}\) \(=\) \(\ds \map \rho {\paren {A_0 \setminus \set y} \cup \set y}\)
\(\ds \) \(\le\) \(\ds \map \rho {A_0 \setminus \set y} + 1\) Rank axiom $(\text R 2)$
\(\ds \) \(\le\) \(\ds \card {A_0 \setminus \set y} + 1\) By choice of $A_0$
\(\ds \) \(=\) \(\ds \card {A_0} - \card{\set y} + 1\) Cardinality of Set Difference with Subset
\(\ds \) \(=\) \(\ds \card {A_0} - 1 + 1\) Cardinality of Singleton
\(\ds \) \(=\) \(\ds \card {A_0}\)

This contradicts the choice of $A_0$:

$\card{A_0} = \min \set{\card A : \map \rho A > \card A}$

It follows that:

$\forall A \subseteq S: \map \rho A \le \card A$