## Theorem

Let $p$ be a prime number.

Let $\struct {\Q_p, \norm {\,\cdot\,}_p}$ be the $p$-adic numbers.

Let $x \in \Q_p: x \ne 0$.

Then:

$\exists v \in \Z: \norm x_p = p^{-v}$

## Lemma

Let $\norm {\,\cdot\,}_p$ be the $p$-adic norm on the rationals $\Q$ for some prime $p$.

Let $\sequence {x_n}$ be a Cauchy sequence in $\struct{\Q, \norm {\,\cdot\,}_p}$ such that $\sequence {x_n}$ does not converge to $0$.

Then:

$\exists v \in \Z: \displaystyle \lim_{n \mathop \to \infty} \norm{x_n}_p = p^{-v}$

## Proof

Let $\struct {\Q_p, \norm {\,\cdot\,}_p}$ be the $p$-adic numbers.

That is, $\Q_p$ is the quotient ring $\CC \, \big / \NN$ where:

$\CC$ denotes the commutative ring of Cauchy sequences over $\struct {\Q, \norm {\,\cdot\,}_p}$
$\NN$ denotes the set of null sequences in $\struct {\Q, \norm {\,\cdot\,}_p}$.

Then $x$ is a left coset in $\CC \, \big / \NN$.

Let $\sequence{x_n}$ be any Cauchy sequence in $x$.

From Lemma:

$\exists v \in \Z: \ds \lim_{n \mathop \to \infty} \norm{x_n}_p = p^{-v}$

By definition of the $p$-adic norm on the $p$-adic numbers:

$\norm x_p = \ds \lim_{n \mathop \to \infty} \norm{x_n}_p = p^{-v}$

$\blacksquare$