Leigh.Samphier/Sandbox/Todo

From ProofWiki
Jump to navigation Jump to search

Common

Help:LaTeX Editing

Bold

$\begin{cases} 1 & : i = j \\ 0 & : i \ne j \end{cases}$


Let $\struct {R, \norm{\,\cdot\,}}$ be a normed division ring with zero $0_R$ and unity $1_R$.

Let $\struct {R, \norm{\,\cdot\,}}$ be a non-Archimedean normed division ring with zero $0_R$ and unity $1_R$.

Let $d$ be the metric induced by the norm $\norm{\,\cdot\,}$.

Let $\tau$ be the topology induced by the norm $\norm{\,\cdot\,}$.

Let $\norm {\,\cdot\,}_p$ be the $p$-adic norm on the rationals $\Q$ for some prime $p$.

Let $p$ be a prime number.

Let $\struct {\Q_p, \norm {\,\cdot\,}_p}$ be the $p$-adic numbers.


Further Ideas

Special:WantedPages

Nagata-Smirnov Metrization Theorem, Stephen Willard - General Topology

Smirnov Metrization Theorem

Stone-Weierstrass Theorem, Stephen Willard - General Topology

Stone-Cech Compactification, Stephen Willard - General Topology

Definition:Stone Space Stone's Representation Theorem for Boolean Algebras

Definition:Frames & Locales

Gelfand-Naimark Theorem

Jordan Curve Theorem

Gelfand-Mazur Theorem