Limit of (Cosine (X) - 1) over X at Zero
Theorem
- $\ds \lim_{x \mathop \to 0} \frac {\cos x - 1} x = 0$
Proof 1
This proof works directly from the definition of the cosine function:
\(\ds \cos x\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \paren {-1}^n \frac {x^{2 n} } {\paren {2 n}!}\) | Definition of Real Cosine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {-1}^0 \cdot \frac {x^{2 \cdot 0} } {\paren {2 \cdot 0}!} + \sum_{n \mathop = 1}^\infty \paren {-1}^n \frac {x^{2 n} } {\paren {2 n}!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1 + \sum_{n \mathop = 1}^\infty \paren {-1}^n \frac {x^{2 n} } {\paren {2 n}!}\) | Definition of Zero Factorial and Definition of Zeroth Power |
\(\ds \lim_{x \mathop \to 0} \frac {\cos x - 1} x\) | \(=\) | \(\ds \lim_{x \mathop \to 0} \frac {1 + \sum_{n \mathop = 1}^\infty \paren {-1}^n \frac {x^{2 n} } {\paren {2 n}!} - 1} x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{x \mathop \to 0} \frac {\sum_{n \mathop = 1}^\infty \paren {-1}^n \frac {x^{2 n} } {\paren {2 n}!} } x\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{x \mathop \to 0} \frac {\sum_{n \mathop = 1}^\infty \paren {-1}^n \frac {x^{2 n - 1} } {\paren {2 n - 1}!} } 1\) | Power Series is Differentiable on Interval of Convergence and L'Hôpital's Rule | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{x \mathop \to 0} \sum_{n \mathop = 1}^\infty \paren {-1}^n \frac {x^{2 n - 1} } {\paren {2 n - 1}!}\) |
Now let:
- $\map {f_n} x = \paren {-1}^n \dfrac {x^{2 n - 1} } {\paren {2 n - 1}!}$
Then for every $n \in \N_{> 0}$, and for all $x \in \closedint {\dfrac 1 2} {\dfrac 1 2}$:
\(\ds \map {f_n} x\) | \(\le\) | \(\ds \size {\paren {-1}^n \frac {x^{2 n - 1} } {\paren {2 n - 1}!} }\) | \(\ds \; = \frac { {\size x}^{2 n - 1} } {\paren {2 n - 1}!}\) | Absolute Value of Product | ||||||||||
\(\ds \) | \(\le\) | \(\ds \frac 1 {2^{2 n - 1} \paren {2 n - 1}!}\) | Power Function is Strictly Increasing over Positive Reals | |||||||||||
\(\ds \) | \(\le\) | \(\ds \frac 1 {2^{2 n - 1} }\) | because the factorial is strictly increasing | |||||||||||
\(\ds \) | \(\le\) | \(\ds \frac 1 {2^n}\) | because $n \ge 1 \iff 2 n - 1 \ge n$ |
But from Sum of Infinite Geometric Sequence:
- $\ds \sum_{n \mathop = 1}^\infty \frac 1 {2^n} = 2 < \infty$
By the Weierstrass M-Test, $\ds \sum_{n \mathop = 1}^\infty \map {f_n} x$ converges uniformly to some function $f$ on $\closedint {\dfrac 1 2} {\dfrac 1 2}$.
But from Real Polynomial Function is Continuous, and the Uniform Limit Theorem $f$ is continuous on $\closedint {\dfrac 1 2} {\dfrac 1 2}$.
So:
- $\ds \lim_{x \mathop \to 0} \map f x = \map f 0 = \sum_{n \mathop = 1}^\infty \paren {-1} \frac {0^{2 n - 1} } {\paren {2 n - 1}!} = 0$
$\blacksquare$
Proof 2
This proof assumes the truth of the Derivative of Cosine Function:
From Cosine of Zero is One:
- $\cos 0 = 1$
From Derivative of Cosine Function:
- $\map {D_x} {\cos x} = -\sin x$
and by Derivative of Constant:
- $\map {D_x} {-1} = 0$
So by Sum Rule for Derivatives:
- $\map {D_x} {\cos x - 1} = -\sin x$
- $\sin 0 = 0$
From Derivative of Identity Function:
- $\map {D_x} x = 1$
Thus L'Hôpital's Rule applies and so:
- $\ds \lim_{x \mathop \to 0} \frac {\cos x - 1} x = \lim_{x \mathop \to 0} \frac {-\sin x} 1 = \frac {-0} 1 = 0$
$\blacksquare$
Proof 3
\(\ds \lim_{x \mathop \to 0} \frac {\cos x - 1} x\) | \(=\) | \(\ds \lim_{x \mathop \to 0} \frac {\paren {\cos x - 1} \paren {\cos x + 1} } {x \paren {\cos x + 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{x \mathop \to 0} \frac {\cos^2 x - 1} {x \paren {\cos x + 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{x \mathop \to 0} \frac {-\sin^2 x} {x \paren {\cos x + 1} }\) | Sum of Squares of Sine and Cosine | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\lim_{x \mathop \to 0} \frac {\sin x} x} \paren {\lim_{x \mathop \to 0} \frac {-\sin x} {\cos x + 1} }\) | Product Rule for Limits of Real Functions | |||||||||||
\(\ds \) | \(=\) | \(\ds 1 \times \paren {\lim_{x \mathop \to 0} \frac{-\sin x} {\cos x + 1} }\) | Limit of $\dfrac {\sin x} x$ at Zero | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\ds \lim_{x \mathop \to 0} \paren {-\sin x} } {\ds \lim_{x \mathop \to 0} \paren {\cos x + 1} }\) | Quotient Rule for Limits of Real Functions | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 0 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
$\blacksquare$
Proof 4
\(\ds \frac {\cos x - 1} x\) | \(=\) | \(\ds \frac {\cos x - \cos 0} x\) | Cosine of Zero is One | |||||||||||
\(\ds \) | \(\to\) | \(\ds \valueat {\dfrac \d {\d x} \cos x} {x \mathop = 0}\) | as $x \to 0$, from Definition of Derivative of Real Function at Point | |||||||||||
\(\ds \) | \(=\) | \(\ds \bigvalueat {\sin x} {x \mathop = 0}\) | Derivative of Cosine Function | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) | Sine of Zero is Zero |
$\blacksquare$