Limit of Real Function/Examples/Identity Function with Discontinuity at 0

From ProofWiki
Jump to navigation Jump to search

Example of Limit of Real Function

Let $f$ be the real function defined as:

$\map f x = \begin {cases} x & : x \ne 0 \\ 1 & : x = 0 \end {cases}$

Then:

$\ds \lim_{x \mathop \to 0} \map f x = 0$


Proof

By definition of the limit of a real function:

$\ds \lim_{x \mathop \to a} \map f x = A$

if and only if:

$\forall \epsilon \in \R_{>0}: \exists \delta \in \R_{>0}: \forall x \in \R: 0 < \size {x - a} < \delta \implies \size {\map f x - A} < \epsilon$


In this instance, we have:

$\map f x = x$ for $x \ne 0$
$A = 0$

Let $\epsilon \in \R_{>0}$ be arbitrary.

Let $\delta = \epsilon$.

Let $0 < \size {x - 1} < \delta = \epsilon$.

Then we obtain:

\(\ds \size {\map f x - 0}\) \(=\) \(\ds \size x\)
\(\ds \) \(<\) \(\ds \epsilon\)

Hence the result.

$\blacksquare$


Sources