Linear Combination of Laplace Transforms/Examples/Example 1

From ProofWiki
Jump to navigation Jump to search

Example of Use of Linear Combination of Laplace Transforms

Let $\laptrans f$ denote the Laplace transform of the real function $f$.


$\laptrans {4 t^2 - 3 \cos 2 t + 5 e^{-t} } = \dfrac 8 {s^3} - \dfrac {3 s} {s^2 + 4} + \dfrac 5 {s + 1}$


Proof

\(\ds \laptrans {4 t^2 - 3 \cos 2 t + 5 e^{-t} }\) \(=\) \(\ds 4 \laptrans {t^2} - 3 \laptrans{\cos 2 t} + 5 \laptrans {e^{-t} }\) Linear Combination of Laplace Transforms
\(\ds \) \(=\) \(\ds 4 \paren {\dfrac {2!} {t^3} } - 3 \laptrans{\cos 2 t} + 5 \laptrans {e^{-t} }\) Laplace Transform of Positive Integer Power
\(\ds \) \(=\) \(\ds 4 \paren {\dfrac {2!} {t^3} } - 3 \paren {\dfrac s {s^2 + 4} } + 5 \laptrans {e^{-t} }\) Laplace Transform of Cosine
\(\ds \) \(=\) \(\ds 4 \paren {\dfrac {2!} {t^3} } - 3 \paren {\dfrac s {s^2 + 4} } + 5 \paren {\dfrac 1 {s + 1} }\) Laplace Transform of Exponential
\(\ds \) \(=\) \(\ds \dfrac 8 {s^3} - \dfrac {3 s} {s^2 + 4} + \dfrac 5 {s + 1}\) simplifying

$\blacksquare$


Sources