Linear Diophantine Equation/Examples/10x - 8y = 42

From ProofWiki
Jump to navigation Jump to search

Example of Linear Diophantine Equation

The linear diophantine equation:

$10 x - 8 y = 42$

has the general solution:

$\tuple {x, y} = \tuple {21 - 4 t, 21 - 5 t}$


Proof

Using the Euclidean Algorithm:

\(\text {(1)}: \quad\) \(\ds 10\) \(=\) \(\ds -1 \times \paren {-8} + 2\)
\(\text {(2)}: \quad\) \(\ds -8\) \(=\) \(\ds -4 \times 2\)

Thus we have that:

$\gcd \set {10, -8} = 2$

which is a divisor of $42$:

$42 = 21 \times 2$

So, from Solution of Linear Diophantine Equation, a solution exists.


Next we find a single solution to $10 x - 8 y = 42$.

Again with the Euclidean Algorithm:

\(\ds 2\) \(=\) \(\ds 10 - \paren {\paren {-1} \times \paren {-8} }\) from $(1)$
\(\ds \leadsto \ \ \) \(\ds 42\) \(=\) \(\ds 21 \times \paren {1 \times 10 + 1 \times \paren {-8} }\)
\(\ds \) \(=\) \(\ds 21 \times 10 + 21 \times \paren {-8}\)


and so:

\(\ds x_0\) \(=\) \(\ds 21\)
\(\ds y_0\) \(=\) \(\ds 21\)

is a solution.


From Solution of Linear Diophantine Equation, the general solution is:

$\forall t \in \Z: x = x_0 + \dfrac b d t, y = y_0 - \dfrac a d t$

where $d = \gcd \set {a, b}$.

In this case:

\(\ds x_0\) \(=\) \(\ds 21\)
\(\ds y_0\) \(=\) \(\ds 21\)
\(\ds a\) \(=\) \(\ds 10\)
\(\ds b\) \(=\) \(\ds -8\)
\(\ds d\) \(=\) \(\ds 2\)


giving:

\(\ds x\) \(=\) \(\ds 21 - 4 t\)
\(\ds y\) \(=\) \(\ds 21 - 5 t\)

$\blacksquare$


Sources