Linear Diophantine Equation/Examples/121x - 88y = 572

From ProofWiki
Jump to navigation Jump to search

Example of Linear Diophantine Equation

The linear diophantine equation:

$121 x - 88 y = 572$

has the general solution:

$\tuple {x, y} = \tuple {156 - 8 t, 208 - 11 t}$


Proof

Using the Euclidean Algorithm:

\(\text {(1)}: \quad\) \(\ds 121\) \(=\) \(\ds -1 \times \paren {-88} + 33\)
\(\text {(2)}: \quad\) \(\ds -88\) \(=\) \(\ds \paren {-3} \times 33 + 11\)
\(\text {(3)}: \quad\) \(\ds 33\) \(=\) \(\ds 3 \times 11\)

Thus we have that:

$\gcd \set {121, -88} = 11$

which is a divisor of $572$:

$572 = 52 \times 11$

So, from Solution of Linear Diophantine Equation, a solution exists.


Next we find a single solution to $121 x - 88 y = 572$.

Again with the Euclidean Algorithm:

\(\ds 11\) \(=\) \(\ds -88 - \paren {\paren {-3} \times 33}\) from $(2)$
\(\ds \) \(=\) \(\ds -88 + 3 \times 33\)
\(\ds \) \(=\) \(\ds -88 + 3 \times \paren {1 \times 121 - \paren {\paren {-1} \times \paren {-88} } }\) from $(1)$
\(\ds \) \(=\) \(\ds -88 + 3 \times \paren {121 + 1 \times \paren {-88} }\)
\(\ds \) \(=\) \(\ds 4 \times \paren {-88} + 3 \times 121\)
\(\ds \leadsto \ \ \) \(\ds 572\) \(=\) \(\ds 52 \times \paren {3 \times 121 + 4 \times \paren {-88} }\)
\(\ds \) \(=\) \(\ds 156 \times 121 + 208 \times \paren {-88}\)


and so:

\(\ds x_0\) \(=\) \(\ds 156\)
\(\ds y_0\) \(=\) \(\ds 208\)

is a solution.


From Solution of Linear Diophantine Equation, the general solution is:

$\forall t \in \Z: x = x_0 + \dfrac b d t, y = y_0 - \dfrac a d t$

where $d = \gcd \set {a, b}$.

In this case:

\(\ds x_0\) \(=\) \(\ds 156\)
\(\ds y_0\) \(=\) \(\ds 208\)
\(\ds a\) \(=\) \(\ds 121\)
\(\ds b\) \(=\) \(\ds -88\)
\(\ds d\) \(=\) \(\ds 11\)


giving:

\(\ds x\) \(=\) \(\ds 156 - 8 t\)
\(\ds y\) \(=\) \(\ds 208 - 11 t\)

$\blacksquare$


Sources