Linear Diophantine Equation/Examples/17x + 19y = 23

From ProofWiki
Jump to navigation Jump to search

Example of Linear Diophantine Equation

The linear diophantine equation:

$17 x + 19 y = 23$

has the general solution:

$\tuple {x, y} = \tuple {207 + 19 t, -184 - 17 t}$


Graphical Presentation

Linear Diophantine Equation-Examples-17x + 19y = 23.png


Proof

Using the Euclidean Algorithm:

\(\text {(1)}: \quad\) \(\ds 19\) \(=\) \(\ds 1 \times 17 + 2\)
\(\text {(2)}: \quad\) \(\ds 17\) \(=\) \(\ds 8 \times 2 + 1\)
\(\text {(3)}: \quad\) \(\ds 2\) \(=\) \(\ds 2 \times 1\)

Thus we have that:

$\gcd \set {17, 19} = 1$

which is (trivially) a divisor of $23$.

So, from Solution of Linear Diophantine Equation, a solution exists.


Next we find a single solution to $17 x + 19 y = 23$.

Again with the Euclidean Algorithm:

\(\ds 1\) \(=\) \(\ds 17 - 8 \times 2\) from $(2)$
\(\ds \) \(=\) \(\ds 17 - 8 \times \paren {19 - 1 \times 17}\) from $(1)$
\(\ds \) \(=\) \(\ds 9 \times 17 - 8 \times 19\)
\(\ds \leadsto \ \ \) \(\ds 23\) \(=\) \(\ds 23 \times \paren {9 \times 17 - 8 \times 19}\)
\(\ds \) \(=\) \(\ds 207 \times 17 - 184 \times 19\)


and so:

\(\ds x_0\) \(=\) \(\ds 207\)
\(\ds y_0\) \(=\) \(\ds -184\)

is a solution.


From Solution of Linear Diophantine Equation, the general solution is:

$\forall t \in \Z: x = x_0 + \dfrac b d t, y = y_0 - \dfrac a d t$

where $d = \gcd \set {a, b}$.

In this case:

\(\ds x_0\) \(=\) \(\ds 207\)
\(\ds y_0\) \(=\) \(\ds -184\)
\(\ds a\) \(=\) \(\ds 17\)
\(\ds b\) \(=\) \(\ds 19\)
\(\ds d\) \(=\) \(\ds 1\)


giving:

\(\ds x\) \(=\) \(\ds 207 + 19 t\)
\(\ds y\) \(=\) \(\ds -184 - 17 t\)

$\blacksquare$


Sources