Linear First Order ODE/x y' + y = x^2 cosine x/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

The linear first order ODE:

$x \, \dfrac {\d y} {\d x} + y = x^2 \cos x$

has the general solution:

$y = 2 \cos x + x \sin x - \dfrac 2 x \sin x + \dfrac C x$


Proof

\(\ds x \dfrac {\d y} {\d x} + y\) \(=\) \(\ds x^2 \cos x\)
\(\ds \leadsto \ \ \) \(\ds x \rd y + y \rd x\) \(=\) \(\ds x^2 \cos x \rd x\)
\(\ds \leadsto \ \ \) \(\ds \map \d {x y}\) \(=\) \(\ds x^2 \cos x \rd x\) Product Rule for Differentials
\(\ds \leadsto \ \ \) \(\ds x y\) \(=\) \(\ds \int x^2 \cos x \rd x\)
\(\ds \) \(=\) \(\ds 2 x \cos x + \paren {x^2 - 2} \sin x + C\) Primitive of $x^2 \cos a x$
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds 2 \cos x + x \sin x - \frac 2 x \sin x + \frac C x\)

$\blacksquare$