Linear First Order ODE/y' + y = 2 x exp -x + x^2

From ProofWiki
Jump to navigation Jump to search

Theorem

The linear first order ODE:

$(1): \quad y' + y = 2 x e^{-x} + x^2$

has the general solution:

$y = x^2 e^{-x} + x^2 - 2 x + 2 + C e^{-x}$


Proof

$(1)$ is in the form:

$\dfrac {\d y} {\d x} + \map P x y = \map Q x$

where:

$\map P x = 1$

Thus:

\(\ds \int \map P x \rd x\) \(=\) \(\ds \int 1 \rd x\)
\(\ds \) \(=\) \(\ds x\)
\(\ds \leadsto \ \ \) \(\ds e^{\int P \rd x}\) \(=\) \(\ds e^x\)

Thus from Solution by Integrating Factor, $(1)$ can be rewritten as:

$\dfrac \d {\d x} e^x y = 2 x + x^2 e^x$

and the general solution is:

$e^x y = x^2 + e^x \paren {x^2 - 2 x + 2} + C$

or:

$y = x^2 e^{-x} + x^2 - 2 x + 2 + C e^{-x}$

$\blacksquare$


Sources